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SETS WITH A M O D E  

BY 

G E O R G E  C O N V E R S E  

ABSTRACT 

Let  M be a point  and  S be a compac t  set in R 2 such that  S is the c losure  of its 

inter ior .  The  t heo rem des i red  says tha t  if M is a mode  of S then  S is convex and 

cent ra l ly  symmet r i c  with respec t  to M. Some  cond i t ions  on the bounda ry  of S 

are  n e e d e d  for the proof  given.  

Thoughout  this paper S will be a nonempty compact subset of R z which is the 

closure of its interior and M will be a mode of S (defined below). In their paper 

Dharmadhikari and Jogdeo [1] prove that S is convex and hence centrally 

symmetric with respect to M provided S has Jordan polygonal boundary. The 

aim of this paper is to replace the condition of a Jordan polygonal boundary with 

a condition satisfied by all compact convex sets. The condition for this paper is 

that the boundary of S will consist of a finite number of acceptable closed curves 

(defined below) which meet in at most a finite number of points. 

DEFINITIONS. For any real number t and any unit vector u in R z, let L(u,  t) be 

the line 

{z E R 2 : ( u ,  z - M )  = t} 

and m be Lebesgue measure on the line. M is a mode of S if, for each u, 

m(L(u ,  t ) f ) S )  is a nonincreasing function of t for t =  > 0 and a nondecreasing 

function of t for t---0. 

A curve is an acceptable closed curve if there is a homeomorphism f of the unit 

circle ([0, 27r] with 0 and 27r identified) onto the curve such that f has a nonzero 

left derivative f~ everywhere on (0,27r], f has a nonzero right derivative f,~ 

everywhere on [0, 27r), f;~ is continuous from the left, f~ is continuous from the 

right and f~ = f~ = f '  except for at most a countable number of points. 

The purpose of this paper is to prove the following 
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THEOREM. Let S be a nonempty compact subset of R : which is the closure of its 

interior. Suppose S has a mode M and the boundary of S consists of a finite number 

of acceptable closed curves which meet in at most a finite number of points. Then S 

is convex and centrally symmetric with respect to M. 

Before proceeding with the proof, there are a few consequences of the 

condition on the boundary of S that should be noted to give a more geometric 

idea of what an acceptable closed curve is and how the condition will be used. 

First the existence of nonzero left and right derivatives at a point imply the 

existence of tangent rays at that point. If f[ = fL the tangent rays are the two 

opposite rays of the tangent line. 

Second, if f is the homeomorphism guaranteed by the definition, then 

f (b )  - f (a )  = f ' (x)dx,  0 <~ a < b <= 2rr. 

This may be concluded from exercise 18:41d in Hewitt and Stromberg [2] or 

from 8:11 (or the proof of 8:21) in Rudin [6]. 

Third, the image of f has finite length given by, for example, fg~lf'(x)t dx [3, 
p. 36]. Thus the boundary of S has finite length. No precise definition of length 

will be needed but elementary calculus such as Purcell 16:4 [4] will be used as 

will the fact that if one side of a rectangle intersects S in a length l greater than 

the opposite side then the length of the boundary of S inside the rectangle is at 

least l. 

Finally, it foIlows from general knowledge (or [5, 24.1]) that the boundary of a 

compact convex set with nonempty interior is an acceptable closed curve. The 

proof of the Theorem now follows with some notation and a sequence of 

lemmas. 

NOTATION. For any angle t, let 

R( t )  = {x E R 2: x = M + a(cost ,  sin t), a >0}.  

If x in the boundary of S has a tangent line denote it by T(x) .  If x ~  y, let (x ,y)  

be the open line segment between x and y. If an endpoint is to be included, a 

square bracket will replace the appropriate parenthesis. Let aS denote the 

boundary of S and d be Euclidean distance in R2. 

LEMMA 1. m{t E[0,27r]  : R ( t ) C  T(x)  for some x E aS} = O. 

PROOF. For any t in (0, 2rr), let s(t)  be the length of the boundary of S within 

the angle from R(0) to R(t ) .  Then s is a monotone increasing function so 
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s(2rr)>-_fo=s'(t)dt. This implies that m{tE(O, 27r):s'(t)=oo}=O. But if 

R(t)CT(x)  for some x ~  M in the boundary of S, then s ' ( t )=  oo. Since T(M) 
includes R( t )  for at most a finite number of angles, the conclusion follows. 

LEMMA 2. S is star-shaped with respect to M. 

PROOF. Since S is the closure of its interior, {x E OS : (x, M) is not contained 

in S} is a subset of the closure of its interior. Therefore,  if S is not star-shaped 

with respect to M, it contains a nonempty open interval (a, b). For a < t < b, 

there is a z (t) in R (t) n OS, z (t) ~ M, with z (t) not in the closure of ((z (t), M) O 

S). For all but a countable number of such t's, T(z(t)) exists. For all but a set of 

measure O, M~ T(z(t)). Therefore  there is a point z in OS such that z is on only 

one acceptable closed curve, T(z) exists, M~ T(z) and z is not in the closure of 

((z, M ) n  S). By the continuity assumptions of f '  and thus on T there is a 

neighborhood V of z such that if y ~ V n oS and T(y)  exists, then M ~  T(y)  

and y is not in the closure of ((y, M) n S). V contains a ball B centered at z of 

radius r > 0. Measuring angles counterclockwise, let L (a)  be the line through z 

making the angle a with T(z). There is a b > 0  such that M~ L(a) f o r [ a  [=  b. 

Define s(a) to be the length of OS strictly in the small angles between L(a) and 

T(z) but outside B. 

For a > 0, s(a) is a monotone increasing function and therefore s' exists 

almost everywhere and 

s(b) >- fo b s'(a)da. 

But, if it exists, s'(a) >-_ r cot a. To see this, let 0 < a < b be given such that s'(a) 
exists. Fix c with 0 <  c < a. For any h > 0 ,  let L1(h) be the line parallel to L(a) 
on the side of L(a) not containing M through a point of intersection of L(a + h) 
with the boundary of B. Let L2(h) be the parallel through the other point of 

intersection so that L2(h) is on the same side of L (a)  as M. For any point x on L2 

the corresponding point on L1 will be the intersection of the perpendicular to L2 

through x with L1. For h small enough, L~(h) and L2(h) intersect L(c) and 

L ( - c )  closer to z than does OS and therefore the portion of L1 between 

L~ n L ( -  c) and the point on L1 corresponding to L ( -  c) n L2 is in S while the 

corresponding line segment on Lz is outside S. (Fig. 1). 

Because 

s(a + h / 2 ) -  s(a - h/2) _-> m (L, n B n S ) -  m (L2 n B n s ) ,  

s(a + h/2)-  s(a - h/2) >= 2r sin (h/2)cot  (a + c) 
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L~(h) 

Lz(h) 

n (h/2) 

L(-c) 
Fig. 1 

L(c) 

and therefore s'(a)>= r c o t ( a  + c). As c was an arbitrary number  in (0, a),  

s'(a) >= r cot a and 

s _-> r c o t a d a = ~ .  
) 

This contradicts the finite length of aS and the proof is complete.  

It follows from Lemma  2 that the finite number  of acceptable closed curves 

intersect only at M if anywhere. 

LEMMA 3. If  R (t) fq S is nonempty, it contains a unique point, r(t), which is 

also in the boundary of S. Furthermore, if r(t) is defined to be M when R (t)fq S is 

empty then r is continuous. 

PROOF. Lemma  2 implies M is in S so if R (t) fq S is empty  then M is in the 

boundary of S. Now, for each t such that R( t )N  S is not empty choose x(t) in 

R(t)  N dS. Otherwise, let x( t )= M. For fixed tl, lira .... x(t) exists. This can be 

seen as follows. If not, let 

t 2 <  t 3 <  " ' "  < t2n < t 2 n + ] <  " ' "  

be such that t, ~ tl and l i m x ( t 2 , ) #  limx(t2~+J. Because S is star-shaped with 

respect to M, the length of the boundary of S is greater  than 

d(x(t2n),x(t:,+J) 

which is infinite. Similarly, 

lim x(t) exists. 
t>tl 

Let x = l i m  .... x(t) and y = lim .... x(t) and suppose d ( x , M ) < d ( y , M ) .  Let 

z = lim . . . . . .  x(t). 
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For each h let A ( t )  be the line through x( t )  and M and B( t )  be the parallel 

line through y. Then m ( B ( t ) A  S)<= m ( A ( t ) A  S)  since M is a mode. But 

lim m ( B ( t )  f') S)  = d ( y , z ) >  d(x, z) = lim m ( A ( t ) N  S) 
t < t  I [ < - t  I 

since S is the closure of its interior, star-shaped with respect to M and at most a 

finite number of acceptable closed curves in 0S meet at M. A similar contradic- 

tion follows from d(x, M ) >  d(y, M) and the proof is complete. 

NOTATION. Let p(t)  = d(r(t) ,  M). Since the interior of S is nonempty, there is 

an r , > 0  such that p ( t ) + p ( t + T r ) > r ~ .  

LEMMA 4. For any t, < t> there is a t in (t,, t2) with r ( t ) ~  M. 

PROOF. If not we may choose t~, t: and t: such that r(t) = M for t~ =< t _-< t2 but 

r ( t ) / M  for t,,< t < tt. Now p(t: + 7r)> r~. Choose r t, 0 <  rt < L,-  t, so that 

I t - t , [ < r l  implies p ( t + T r ) > r t .  For 0 < h ,  let L j h )  be the line through 

r(t + h + r parallel to the line through r(t) and M. With tz < t < t2, by perhaps 

increasing h slightly, we may assume r(t + h + 7r) is the closest point to M on 

L, N OS between R ( t , +  7r) and R(t2+ 7r). Let t (h)  be the minimum angle t 

between t,, and t, such that r(t) is in L,. As h goes to 0, t (h)  will tend to tt. For h 

small, m ( L ~ ( h ) N  S)>= d~ + d2 (Fig. 2), where 

M R(t) 

dl 
Ll(h) r(t,h+lI) 

R(tz+lf) R(t o) ~ -  R(tl ) 
Fig. 2 

dt = p(t  + h + 7 r ) c o s ( h ) -  p(t + h + ~ ' ) s in (h)co t ( t2 -  t) 

and 

d,. = p( t (h  ))cos(t - t(h ) ) -  p(t  + h + ~')sin(h)cot  (t - t,,). 

Now, p(t (h  ) ) c o s ( t -  t(h ) )= p(t  + h + r r ) s i n ( h ) c o t ( t -  t(h )) and 

m(L~(h)  F1 S). Thus 

p(t  + => 
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p(t + 7r)-  p(t + h + zr)cos(h)  

>= p(t + h + 7r)sin(h)[cot (t - t(h)) - cot(t2 - t) - cot(t - to)]. 

For t sufficiently close to t~ and h sufficiently small, p(t + 7r)-  p(t + h + rr) >= 

r,h cot( t  - t~) and so I p'(t + 7r)l >= rtcot(t  - t,). Hence,  the length of the bound- 

ary of S is at least 

f ,,§ r, cot (t t,)dt 
1 

(see, for example,  Purcell [4], p. 528) which is infinite. 

LEMMA 5. Suppose the boundary of S has tangent lines at r(t) and r(t + 7r). If  

M is not in T(r(t)) t_) T(r(t  + 7r)), then T(r(t)) is parallel to T(r(t  + 70). 

PROOF. Suppose not. Let x be the intersection of T(r(t)) with T(r(t + 7r)) and 

a be the angle between them. Let L(0) be the line through r(t) and M. For h > 0 

let L(h)  be the line parallel to L(0) at distance h from M such that M and x are 

on the same side of L (h). It follows from Lemma 4 that 

m(L(h  ) (7 S ) -  m(L(O) (-I S ) >= h t a n a  + ~r(h) 

where o-(h)/h tends to 0 with h. For h small enough this implies that 

m (L(h)  N S) > m (L(0) r S) which contradicts the fact that M is a mode of S. 

COROLLARY 1. I f  p(t) is decreasing (increasing) for a < t < b, then so is 

p(t + 7r). 

PROOF. Lemma  5 guarantees that if p'(t) is negative then so is p ' ( t  + rr). Thus 

the conclusion is valid if p'(t) exists. The continuity conditions in the definition 

of an acceptable closed curve are then sufficient to guarantee the conclusion 

when p'(t) does not exist. The example after Corollary 2 illustrates why the 

continuity assumptions are needed for this proof. 

COROLLARY 2. M is not in the boundary of S. 

PROOF. If M = r(t~), the continuity conditions in the definition of an accept- 

able closed curve and L e m m a  4 imply that there is a t,, < t, and a t2 > t, such that 

p(t) is decreasing in (to, t~) and increasing in (t,, t2). Using Corollary 1, it is clear 

that lines close to M parallel to R (t~ + 7r) will intersect S in a segment longer 

than p(tl + 7r). This contradiction establishes the result. 

EXAMPLE. Let f be the usual Cantor  ternary function. Define 

p( t )=f ( t /Tr )  for 0=<t=<Tr and 

p ( t ) = f ( ( 2 r r - t ) / r r )  for 7 r = < t = 2 ~  -. 
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Then (t, p(t)) give polar coordinates for the boundary of a set S. Whenever  aS 

has a tangent line at (t, p(t)), it also has the same or a parallel tangent line at 

(t + rr, p(t + rr)). However  p is increasing for 0_-< t =< rr and decreasing for 

rr =< t < 2rr. Thus, in some sense, it is possible to have a set satisfying Lemma  5 

but not Corollary 1 or 2. The origin is not a mode of S so this example only 

shows that the continuity assumptions are needed for the proof of Corollary 1 

and not that they are needed for the final theorem. What is neeided for the final 

theorem is a question I haven ' t  been able to resolve. 

LEMMA 6. S is convex. 

PROOF. Suppose not. Choose a < b < a + rr such that ( r (a) , r (b) )ZS .  Now 

let L be the line closest to M which is parallel to the line through r(a) and r(b) 

but still contains some point r(t) for a < t < b. Let c be the infimum of 

{ t E ( a , b ) : r ( t ) E L }  so that ( r ( t ) , M ) n L  is not empty for t in (a,c) but 

r(c) E L. Let L~ be the parallel to L through r(c + rr). It follows from Lemma  5 

and the continuity conditions on an acceptable closed curve that Jr(t), M)  n L, is 

not empty for a + rr -<_ t - b + 7r. Hence,  for t in (a, c) and close to c, the line 

through r(t) parallel to R(c)  intersects S in a segment longer than [r(c), r(c + 

7r)]. This contradicts the fact that M is a mode of S. 

PROOF OF THE THEOREM. Lemma  6 says S is convex. If we choose a so that 

p(a) = p(a + rr) central symmetry follows since 

f7 p ( b ) -  p(a) = p'(t)dt = .~ p'(t)dt = p(b + rr ) -  p(a + rr). 

Alternatively, Theorem 2 in Dharmadhikar i  and Jogdeo [1] says that if a 

compact  convex body has a mode then it is centrally symmetric about the mode. 
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