SETS WITH A MODE

BV GEORGE CONVERSE

ABSTRACT

Let M be a point and S be a compact set in R^2 such that S is the closure of its interior. The theorem desired says that if M is a mode of S then S is convex and centrally symmetric with respect to M. Some conditions on the boundary of S are needed for the proof given.

Thoughout this paper S will be a nonempty compact subset of R^2 which is the closure of its interior and M will be a mode of S (defined below). In their paper Dharmadhikari and Jogdeo $[1]$ prove that S is convex and hence centrally symmetric with respect to M provided S has Jordan polygonal boundary. The aim of this paper is to replace the condition of a Jordan polygonal boundary with a condition satisfied by all compact convex sets. The condition for this paper is that the boundary of S will consist of a finite number of acceptable closed curves (defined below) which meet in at most a finite number of points.

DEFINITIONS. For any real number t and any unit vector u in R^2 , let $L(u, t)$ be the line

$$
\{z\in R^2:\langle u,z-M\rangle=t\}
$$

and m be Lebesgue measure on the line. M is a *mode* of S if, for each u, $m(L(u, t) \cap S)$ is a nonincreasing function of t for $t \ge 0$ and a nondecreasing function of t for $t \le 0$.

A curve is an *acceptable closed curve* if there is a homeomorphism f of the unit circle ($[0, 2\pi]$ with 0 and 2π identified) onto the curve such that f has a nonzero left derivative f'_k everywhere on $(0,2\pi)$, f has a nonzero right derivative f'_k everywhere on $[0, 2\pi)$, f'_{k} is continuous from the left, f'_{k} is continuous from the right and $f'_{k} = f'_{k} = f'$ except for at most a countable number of points.

The purpose of this paper is to prove the following

Received December 15, 1975 and in revised form August 26, 1976

THEOREM. Let S be a nonempty compact subset of R^2 which is the closure of its *interior. Suppose S has a mode M and the boundary of S consists of a finite number of acceptable closed curves which meet in at most a finite number of points. Then S is convex and centrally symmetric with respect to M.*

Before proceeding with the proof, there are a few consequences of the condition on the boundary of S that should be noted to give a more geometric idea of what an acceptable closed curve is and how the condition will be used. First the existence of nonzero left and right derivatives at a point imply the existence of tangent rays at that point. If $f'_i = f'_k$ the tangent rays are the two opposite rays of the tangent line.

Second, if f is the homeomorphism guaranteed by the definition, then

$$
f(b)-f(a)=\int_a^b f'(x)dx, \qquad 0\leq a
$$

This may be concluded from exercise 18:41d in Hewitt and Stromberg [2] or from 8:11 (or the proof of 8:21) in Rudin $[6]$.

Third, the image of f has finite length given by, for example, $\int_0^{2\pi} |f'(x)| dx$ [3, p. 36]. Thus the boundary of S has finite length. No precise definition of length will be needed but elementary calculus such as Purcell 16:4 [4] will be used as will the fact that if one side of a rectangle intersects S in a length l greater than the opposite side then the length of the boundary of S inside the rectangle is at least l.

Finally, it follows from general knowledge (or [5, 24.1]) that the boundary of a compact convex set with nonempty interior is an acceptable closed curve. The proof of the Theorem now follows with some notation and a sequence of lemmas.

NOTATION. For any angle t , let

$$
R(t) = \{x \in R^2 : x = M + a(\cos t, \sin t), a > 0\}.
$$

If x in the boundary of S has a tangent line denote it by $T(x)$. If $x \neq y$, let (x, y) be the open line segment between x and y . If an endpoint is to be included, a square bracket will replace the appropriate parenthesis. Let ∂S denote the boundary of S and d be Euclidean distance in R^2 .

LEMMA 1. $m\{t \in [0,2\pi] : R(t) \subset T(x) \text{ for some } x \in \partial S\} = 0.$

PROOF. For any t in $(0, 2\pi)$, let $s(t)$ be the length of the boundary of S within the angle from $R(0)$ to $R(t)$. Then s is a monotone increasing function so $s(2\pi) \ge \int_0^{2\pi} s'(t)dt$. This implies that $m\{t \in (0, 2\pi): s'(t) = \infty\} = 0$. But if $R(t) \subset T(x)$ for some $x \neq M$ in the boundary of *S*, then $s'(t) = \infty$. Since $T(M)$ includes $R(t)$ for at most a finite number of angles, the conclusion follows.

LEMMA *2. S is star-shaped with respect to M.*

PROOF. Since S is the closure of its interior, $\{x \in \partial S : (x, M)$ is not contained in S is a subset of the closure of its interior. Therefore, if S is not star-shaped with respect to M, it contains a nonempty open interval (a, b) . For $a \le t \le b$, there is a $z(t)$ in $R(t) \cap \partial S$, $z(t) \neq M$, with $z(t)$ not in the closure of $((z(t), M) \cap S)$ S). For all but a countable number of such t's, $T(z(t))$ exists. For all but a set of measure 0, $M \notin T(z(t))$. Therefore there is a point z in ∂S such that z is on only one acceptable closed curve, $T(z)$ exists, $M \notin T(z)$ and z is not in the closure of $((z, M) \cap S)$. By the continuity assumptions of f' and thus on T there is a neighborhood V of z such that if $y \in V \cap \partial S$ and $T(y)$ exists, then $M \notin T(y)$ and y is not in the closure of $((y, M) \cap S)$. V contains a ball B centered at z of radius $r > 0$. Measuring angles counterclockwise, let $L(a)$ be the line through z making the angle a with $T(z)$. There is a $b > 0$ such that $M \notin L(a)$ for $|a| \leq b$. Define $s(a)$ to be the length of ∂S strictly in the small angles between $L(a)$ and *T(z)* but outside B.

For $a > 0$, $s(a)$ is a monotone increasing function and therefore s' exists almost everywhere and

$$
s(b)\geqq \int_0^b s'(a) da.
$$

But, if it exists, $s'(a) \ge r \cot a$. To see this, let $0 < a < b$ be given such that $s'(a)$ exists. Fix c with $0 < c < a$. For any $h > 0$, let $L_1(h)$ be the line parallel to $L(a)$ on the side of $L(a)$ not containing M through a point of intersection of $L(a + h)$ with the boundary of B. Let $L_2(h)$ be the parallel through the other point of intersection so that $L_2(h)$ is on the same side of $L(a)$ as M. For any point x on L_2 the corresponding point on L_1 will be the intersection of the perpendicular to L_2 through x with L_1 . For h small enough, $L_1(h)$ and $L_2(h)$ intersect $L(c)$ and $L(-c)$ closer to z than does ∂S and therefore the portion of L_1 between $L_1 \cap L(-c)$ and the point on L_1 corresponding to $L(-c) \cap L_2$ is in S while the corresponding line segment on L_2 is outside S. (Fig. 1).

Beeause

$$
s(a + h/2) - s(a - h/2) \ge m(L_1 \cap B \cap S) - m(L_2 \cap B \cap S),
$$

$$
s(a + h/2) - s(a - h/2) \ge 2r \sin(h/2) \cot(a + c)
$$

and therefore $s'(a) \ge r \cot(a + c)$. As c was an arbitrary number in $(0, a)$,

$$
s'(a) \ge r \cot a \text{ and}
$$

$$
s(b) \ge \int_0^b r \cot a \, da = \infty.
$$

This contradicts the finite length of ∂S and the proof is complete.

It follows from Lemma 2 that the finite number of acceptable closed curves intersect only at M if anywhere.

LEMMA 3. If $R(t) \cap S$ is nonempty, it contains a unique point, $r(t)$, which is *also in the boundary of S. Furthermore, if r(t) is defined to be M when R(t)* \cap *S is empty then r is continuous.*

PROOF. Lemma 2 implies M is in S so if $R(t) \cap S$ is empty then M is in the boundary of S. Now, for each t such that $R(t) \cap S$ is not empty choose $x(t)$ in $R(t) \cap dS$. Otherwise, let $x(t) = M$. For fixed t_1 , $\lim_{t \le t_1} x(t)$ exists. This can be seen as follows. If not, let

$$
t_2 < t_3 < \cdots < t_{2n} < t_{2n+1} < \cdots
$$

be such that $t_n \to t_1$ and $\lim x(t_{2n}) \neq \lim x(t_{2n+1})$. Because S is star-shaped with respect to M , the length of the boundary of S is greater than

$$
\sum_{n=1}^{\infty} d(x(t_{2n}), x(t_{2n+1}))
$$

which is infinite. Similarly,

$$
\lim_{t>t_1} x(t) \text{ exists.}
$$

Let $x = \lim_{t \to t_1} x(t)$ and $y = \lim_{t \to t_1} x(t)$ and suppose $d(x, M) < d(y, M)$. Let $z = \lim_{t \le t_1 + \pi} x(t)$.

For each t, let $A(t)$ be the line through $x(t)$ and M and $B(t)$ be the parallel line through y. Then $m(B(t) \cap S) \leq m(A(t) \cap S)$ since M is a mode. But

$$
\lim_{t \le t_1} m(B(t) \cap S) = d(y, z) > d(x, z) = \lim_{t \le t_1} m(A(t) \cap S)
$$

since S is the closure of its interior, star-shaped with respect to M and at most a finite number of acceptable closed curves in ∂S meet at M. A similar contradiction follows from $d(x, M) > d(y, M)$ and the proof is complete.

NOTATION. Let $\rho(t) = d(r(t), M)$. Since the interior of S is nonempty, there is an $r_1>0$ such that $\rho(t)+\rho(t+\pi)>r_1$.

LEMMA 4. For any $t_1 < t_2$, there is a t in (t_1, t_2) with $r(t) \neq M$.

PROOF. If not we may choose t_0 , t_1 and t_2 such that $r(t) = M$ for $t_1 \le t \le t_2$ but $r(t) \neq M$ for $t_0 < t < t_1$. Now $\rho(t_1 + \pi) > r_1$. Choose η , $0 < \eta < t_2 - t_1$ so that $|t-t_1| < \eta$ implies $\rho(t+\pi) > r_1$. For $0 < h$, let $L_1(h)$ be the line through $r(t + h + \pi)$ parallel to the line through $r(t)$ and M. With $t_1 < t < t_2$, by perhaps increasing h slightly, we may assume $r(t + h + \pi)$ is the closest point to M on $L_1 \cap \partial S$ between $R(t_1 + \pi)$ and $R(t_2 + \pi)$. Let $t(h)$ be the minimum angle t between t_0 and t_1 such that $r(t)$ is in L_1 . As h goes to 0, $t(h)$ will tend to t_1 . For h small, $m(L_1(h) \cap S) \ge d_1 + d_2$ (Fig. 2), where

Fig. 2

$$
d_1 = \rho(t+h+\pi)\cos(h)-\rho(t+h+\pi)\sin(h)\cot(t_2-t)
$$

and

$$
d_2 = \rho(t(h))\cos(t - t(h)) - \rho(t + h + \pi)\sin(h)\cot(t - t_0).
$$

Now, $\rho(t(h))\cos(t-t(h)) = \rho(t+h+\pi)\sin(h)\cot(t-t(h))$ and $\rho(t+\pi) \ge$ $m(L_1(h) \cap S)$. Thus

$$
\rho(t+\pi)-\rho(t+h+\pi)\cos(h) \geq \rho(t+h+\pi)\sin(h)[\cot(t-t(h))- \cot(t_2-t)-\cot(t-t_0)].
$$

For t sufficiently close to t_1 and h sufficiently small, $\rho(t + \pi) - \rho(t + h + \pi) \ge$ $r_1h \cot(t - t_1)$ and so $|\rho'(t + \pi)| \ge r_1 \cot(t - t_1)$. Hence, the length of the boundary of S is at least

$$
\int_{t_1}^{t_1+\varepsilon} r_1 \cot\left(t-t_1\right) dt
$$

(see, for example, Purcell [4], p. 528) which is infinite.

LEMMA 5. *Suppose the boundary of S has tangent lines at r(t) and r(t +* π *). If M* is not in $T(r(t)) \cup T(r(t + \pi))$, then $T(r(t))$ is parallel to $T(r(t + \pi))$.

PROOF. Suppose not. Let x be the intersection of $T(r(t))$ with $T(r(t + \pi))$ and a be the angle between them. Let $L(0)$ be the line through $r(t)$ and M. For $h > 0$ let $L(h)$ be the line parallel to $L(0)$ at distance h from M such that M and x are on the same side of $L(h)$. It follows from Lemma 4 that

$$
m(L(h) \cap S) - m(L(0) \cap S) \geq h \tan a + \sigma(h)
$$

where $\sigma(h)/h$ tends to 0 with h. For h small enough this implies that $m(L(h) \cap S)$ > $m(L(0) \cap S)$ which contradicts the fact that M is a mode of S.

COROLLARY 1. If $\rho(t)$ is decreasing (increasing) for $a < t < b$, then so is $\rho(t+\pi)$.

PROOF. Lemma 5 guarantees that if $p'(t)$ is negative then so is $p'(t + \pi)$. Thus the conclusion is valid if $\rho'(t)$ exists. The continuity conditions in the definition of an acceptable closed curve are then sufficient to guarantee the conclusion when $\rho'(t)$ does not exist. The example after Corollary 2 illustrates why the continuity assumptions are needed for this proof.

COROLLARY *2. M is not in the boundary of S.*

PROOF. If $M = r(t_1)$, the continuity conditions in the definition of an acceptable closed curve and Lemma 4 imply that there is a $t_0 < t_1$ and a $t_2 > t_1$ such that $p(t)$ is decreasing in (t_0, t_1) and increasing in (t_1, t_2) . Using Corollary 1, it is clear that lines close to M parallel to $R(t_1 + \pi)$ will intersect S in a segment longer than $\rho(t_1 + \pi)$. This contradiction establishes the result.

EXAMPLE. Let f be the usual Cantor ternary function. Define

$$
\rho(t) = f(t/\pi) \quad \text{for} \quad 0 \le t \le \pi \quad \text{and}
$$

$$
\rho(t) = f((2\pi - t)/\pi) \quad \text{for} \quad \pi \le t \le 2\pi.
$$

130 G. CONVERSE Israel J. Math.

Then $(t, \rho(t))$ give polar coordinates for the boundary of a set S. Whenever ∂S has a tangent line at $(t, \rho(t))$, it also has the same or a parallel tangent line at $(t + \pi, \rho(t + \pi))$. However ρ is increasing for $0 \le t \le \pi$ and decreasing for $\pi \leq t \leq 2\pi$. Thus, in some sense, it is possible to have a set satisfying Lemma 5 but not Corollary 1 or 2. The origin is not a mode of S so this example only shows that the continuity assumptions are needed for the proof of Corollary 1 and not that they are needed for the final theorem. What is needed for the final theorem is a question I haven't been able to resolve.

LEMMA *6. S is convex.*

PROOF. Suppose not. Choose $a < b < a + \pi$ such that $(r(a), r(b)) \not\subset S$. Now let L be the line closest to M which is parallel to the line through $r(a)$ and $r(b)$ but still contains some point $r(t)$ for $a \le t \le b$. Let c be the infimum of ${t \in (a, b) : r(t) \in L}$ so that $(r(t), M) \cap L$ is not empty for t in (a, c) but $r(c) \in L$. Let L_1 be the parallel to L through $r(c + \pi)$. It follows from Lemma 5 and the continuity conditions on an acceptable closed curve that $[r(t), M] \cap L_1$ is not empty for $a + \pi \le t \le b + \pi$. Hence, for t in (a, c) and close to c, the line through $r(t)$ parallel to $R(c)$ intersects S in a segment longer than $[r(c), r(c +$ π). This contradicts the fact that M is a mode of S.

PROOF OF THE THEOREM. Lemma 6 says S is convex. If we choose a so that $\rho(a) = \rho(a + \pi)$ central symmetry follows since

$$
\rho(b)-\rho(a)=\int_a^b\rho'(t)dt=\int_{a+\pi}^{b+\pi}\rho'(t)dt=\rho(b+\pi)-\rho(a+\pi).
$$

Alternatively, Theorem 2 in Dharmadhikari and Jogdeo [1] says that if a compact convex body has a mode then it is centrally symmetric about the mode.

REFERENCES

1. S. W. Dharmadhikari and Kumar Jogdeo, *A characterization of convexity and central* symmetry for planar polygonal sets, Israel J. Math. 15 (1973), 356-366.

2 Edwin Hewitt and Karl Stromberg, *Real and Abstract Analysis*, Springer-Verlag, 1965.

3. Einar Hille, *Analytic Function Theory*, Vol. 1, Ginn, 1962.

4. Edwin J. Purcell, *Calculus with Analytic Geometry,* 2nd ed., Appleton-Century-Crofts, 1972.

5. R. Tyrell Rockafellar, *Convex Analysis,* Princeton University Press, 1970.

6. Walter Rudm, *Real and Complex Analysis,* McGraw-Hill, 1966.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA ILL 61801 USA